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We study time variation in expected excess bond returns. We run regressions of
one-year excess returns on initial forward rates. We find that a single factor, a
single tent-shaped linear combination of forward rates, predicts excess returns on
one- to five-year maturity bonds with R2 up to 0.44. The return-forecasting factor is
countercyclical and forecasts stock returns. An important component of the return-
forecasting factor is unrelated to the level, slope, and curvature movements de-
scribed by most term structure models. We document that measurement errors do
not affect our central results. (JEL G0, G1, E0, E4)

We study time-varying risk premia in U.S.
government bonds. We run regressions of one-
year excess returns–borrow at the one-year rate,
buy a long-term bond, and sell it in one year–on
five forward rates available at the beginning of
the period. By focusing on excess returns, we
net out inflation and the level of interest rates,
so we focus directly on real risk premia in the
nominal term structure. We find R2 values as
high as 44 percent. The forecasts are statisti-
cally significant, even taking into account the
small-sample properties of test statistics, and
they survive a long list of robustness checks.
Most important, the pattern of regression coef-
ficients is the same for all maturities. A single
“return-forecasting factor,” a single linear com-
bination of forward rates or yields, describes
time-variation in the expected return of all
bonds.

This work extends Eugene Fama and Robert
Bliss’s (1987) and John Campbell and Robert

Shiller’s (1991) classic regressions. Fama and
Bliss found that the spread between the n-year
forward rate and the one-year yield predicts the
one-year excess return of the n-year bond, with
R2 about 18 percent. Campbell and Shiller
found similar results forecasting yield changes
with yield spreads. We substantially strengthen
this evidence against the expectations hypothe-
sis. (The expectations hypothesis that long
yields are the average of future expected short
yields is equivalent to the statement that excess
returns should not be predictable.) Our p-values
are much smaller, we more than double the
forecast R2, and the return-forecasting factor
drives out individual forward or yield spreads in
multiple regressions. Most important, we find
that the same linear combination of forward
rates predicts bond returns at all maturities,
where Fama and Bliss, and Campbell and
Shiller, relate each bond’s expected excess re-
turn to a different forward spread or yield
spread.

Measurement Error.—One always worries
that return forecasts using prices are contami-
nated by measurement error. A spuriously high
price at t will seem to forecast a low return from
time t to time t � 1; the price at t is common to
left- and right-hand sides of the regression. We
address this concern in a number of ways. First,
we find that the forecast power, the tent shape,
and the single-factor structure are all preserved
when we lag the right-hand variables, running
returns from t to t � 1 on variables at time
t�i/12. In these regressions, the forecasting
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variables (time t�i/12 yields or forward rates)
do not share a common price with the excess
return from t to t � 1. Second, we compute the
patterns that measurement error can produce
and show they are not the patterns we observe.
Measurement error produces returns on n-period
bonds that are forecast by the n-period yield. It
does not produce the single-factor structure; it
does not generate forecasts in which (say) the
five-year yield helps to forecast the two-year
bond return. Third, the return-forecasting factor
predicts excess stock returns with a sensible
magnitude. Measurement error in bond prices
cannot generate this result.

Our analysis does reveal some measurement
error, however. Lagged forward rates also help
to forecast returns in the presence of time-t
forward rates. A regression on a moving aver-
age of forward rates shows the same tent-shaped
single factor, but improves R2 up to 44 percent.
These results strongly suggest measurement er-
ror. Since bond prices are time-t expectations of
future nominal discount factors, it is very diffi-
cult for any economic model of correctly mea-
sured bond prices to produce dynamics in which
lagged yields help to forecast anything. If, how-
ever, the risk premium moves slowly over time
but there is measurement error, moving aver-
ages will improve the signal to noise ratio on the
right-hand side.

These considerations together argue that the
core results–a single roughly tent-shaped factor
that forecasts excess returns of all bonds, and
with a large R2–are not driven by measurement
error. Quite the contrary: to see the core results
you have to take steps to mitigate measurement
error. A standard monthly AR(1) yield VAR
raised to the twelfth power misses most of the
one-year bond return predictability and com-
pletely misses the single-factor representation.
To see the core results you must look directly at
the one-year horizon, which cumulates the per-
sistent expected return relative to serially un-
correlated measurement error, or use more
complex time series models, and you see the
core results better with a moving average right-
hand variable.

The single-factor structure is statistically re-
jected when we regress returns on time-t for-
ward rates. However, the single factor explains
over 99.5 percent of the variance of expected

excess returns, so the rejection is tiny on an
economic basis. Also, the statistical rejection
shows the characteristic pattern of small mea-
surement errors: tiny movements in n-period
bond yields forecast tiny additional excess re-
turn on n-period bonds, and this evidence
against the single-factor model is much weaker
with lagged right-hand variables. We conclude
that the single-factor model is an excellent ap-
proximation, and may well be the literal truth
once measurement errors are accounted for.

Term Structure Models.—We relate the return-
forecasting factor to term structure models in
finance. The return-forecasting factor is a sym-
metric, tent-shaped linear combination of for-
ward rates. Therefore, it is unrelated to pure
slope movements: a linearly rising or declining
yield or forward curve gives exactly the same
return forecast. An important component of the
variation in the return-forecasting factor, and an
important part of its forecast power, is unrelated
to the standard “level,” “slope,” and “curvature”
factors that describe the vast bulk of movements
in bond yields and thus form the basis of most
term structure models. The four- to five-year
yield spread, though a tiny factor for yields,
provides important information about the ex-
pected returns of all bonds. The increased
power of the return-forecasting factor over
three-factor forecasts is statistically and eco-
nomically significant.

This fact, together with the fact that lagged
forward rates help to predict returns, may explain
why the return-forecasting factor has gone unrec-
ognized for so long in this well-studied data, and
these facts carry important implications for term
structure modeling. If you first posit a factor
model for yields, estimate it on monthly data, and
then look at one-year expected returns, you will
miss much excess return forecastability and espe-
cially its single-factor structure. To incorporate
our evidence on risk premia, a yield curve model
must include something like our tent-shaped
return-forecasting factor in addition to such tradi-
tional factors as level, slope, and curvature, even
though the return-forecasting factor does little to
improve the model’s fit for yields, and the model
must reconcile the difference between our direct
annual forecasts and those implied by short hori-
zon regressions.
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One may ask, “How can it be that the five-
year forward rate is necessary to predict the
returns on two-year bonds?” This natural ques-
tion reflects a subtle misconception. Under the
expectations hypothesis, yes, the n-year forward
rate is an optimal forecast of the one-year spot
rate n � 1 years from now, so no other variable
should enter that forecast. But the expectations
hypothesis is false, and we’re forecasting one-
year excess returns, and not spot rates. Once we
abandon the expectations hypothesis (so that
returns are forecastable at all), it is easy to
generate economic models in which many for-
ward rates are needed to forecast one-year ex-
cess returns on bonds of any maturity. We
provide an explicit example. The form of the
example is straightforward: aggregate con-
sumption and inflation follow time-series pro-
cesses, and bond prices are generated by
expected marginal utility growth divided by in-
flation. The discount factor is conditionally het-
eroskedastic, generating a time-varying risk
premium. In the example, bond prices are linear
functions of state variables, so this example also
shows that it is straightforward to construct
affine models that reflect our or related patterns
of bond return predictability. Affine models, in
the style of Darrell Duffie and Rui Kan (1996),
dominate the term structure literature, but exist-
ing models do not display our pattern of return
predictability. A crucial feature of the example,
but an unfortunate one for simple storytelling, is
that the discount factor must reflect five state
variables, so that five bonds can move indepen-
dently. Otherwise, one could recover (say) the
five-year bond price exactly from knowledge of
the other four bond prices, and multiple regres-
sions would be impossible.

Related Literature.—Our single-factor model
is similar to the “single index” or “latent vari-
able” models used by Lars Hansen and Robert
Hodrick (1983) and Wayne Ferson and Michael
Gibbons (1985) to capture time-varying ex-
pected returns. Robert Stambaugh (1988) ran
regressions similar to ours of two- to six-month
bond excess returns on one- to six-month for-
ward rates. After correcting for measurement
error by using adjacent rather than identical
bonds on the left- and right-hand side, Stam-
baugh found a tent-shaped pattern of coeffi-

cients similar to ours (his Figure 2, p. 53).
Stambaugh’s result confirms that the basic pat-
tern is not driven by measurement error. Antti
Ilmanen (1995) ran regressions of monthly ex-
cess returns on bonds in different countries on a
term spread, the real short rate, stock returns,
and bond return betas.

I. Bond Return Regressions

A. Notation

We use the following notation for log bond
prices:

pt
�n� � log price of n-year discount bond

at time t.

We use parentheses to distinguish maturity
from exponentiation in the superscript. The log
yield is

yt
�n� � �

1

n
pt

�n�.

FIGURE 1. REGRESSION COEFFICIENTS OF ONE-YEAR EXCESS

RETURNS ON FORWARD RATES

Notes: The top panel presents estimates � from the unre-
stricted regressions (1) of bond excess returns on all forward
rates. The bottom panel presents restricted estimates b��

from the single-factor model (2). The legend (5, 4, 3, 2)
gives the maturity of the bond whose excess return is
forecast. The x axis gives the maturity of the forward rate on
the right-hand side.
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We write the log forward rate at time t for loans
between time t � n � 1 and t � n as

ft
�n� � pt

�n � 1� � pt
�n�

and we write the log holding period return from
buying an n-year bond at time t and selling it as
an n � 1 year bond at time t � 1 as

rt � 1
�n� � pt � 1

�n � 1� � pt
�n�.

We denote excess log returns by

rxt � 1
�n� � rt � 1

�n� � yt
�1�.

We use the same letters without n index to
denote vectors across maturity, e.g.,

rxt � 1 � �rxt
�2� rxt

�3� rxt
�4� rxt

�5���.

When used as right-hand variables, these vec-
tors include an intercept, e.g.,

yt � �1 yt
�1� yt

�2� yt
�3� yt

�4� yt
�5���

ft � �1 yt
�1� f t

�2� f t
�3� f t

�4� f t
�5���.

We use overbars to denote averages across ma-
turity, e.g.,

rxt � 1 �
1

4 �
n � 2

5

rxt � 1
�n� .

B. Excess Return Forecasts

We run regressions of bond excess returns at
time t � 1 on forward rates at time t. Prices,

FIGURE 2. FACTOR MODELS

Notes: Panel A shows coefficients �* in a regression of average (across maturities) holding period returns on all yields,
rxt�1 � �*�yt � �t�1. Panel B shows the loadings of the first three principal components of yields. Panel C shows the
coefficients on yields implied by forecasts that use yield-curve factors to forecast excess returns. Panel D shows coefficient
estimates from excess return forecasts that use one, two, three, four, and all five forward rates.
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yields, and forward rates are linear functions of
each other, so the forecasts are the same for any
of these choices of right-hand variables. We
focus on a one-year return horizon. We use the
Fama-Bliss data (available from CRSP) of one-
through five-year zero coupon bond prices, so
we can compute annual returns directly.

We run regressions of excess returns on all
forward rates,

(1) rxt � 1
�n� � �0

�n� � �1
�n�yt

�1� � �2
�n�f t

�2�

� ... � �5
�n�f t

�5� � �t � 1
�n� .

The top panel of Figure 1 graphs the slope
coefficients [�1

(n) ... �5
(n)] as a function of matu-

rity n. (The Appendix, which is available at
http://www.aeaweb.org/aer/contents/appendices/
mar05_app_cochrane.pdf, includes a table of
the regressions.) The plot makes the pattern
clear: The same function of forward rates fore-
casts holding period returns at all maturities.
Longer maturities just have greater loadings on
this same function.

This beautiful pattern of coefficients cries for
us to describe expected excess returns of all
maturities in terms of a single factor, as follows:

(2) rxt � 1
�n� � bn ��0 � �1 yt

�1� � �2 f t
�2�

� ... � �5 f t
�5�) � �t � 1

�n� .

bn and �n are not separately identified by this spec-
ification, since you can double all the b and halve all
the �. We normalize the coefficients by imposing
that the average value of bn is one, 1⁄4�n�2

5 bn � 1.
We estimate (2) in two steps. First, we estimate

the � by running a regression of the average
(across maturity) excess return on all forward rates,

(3)
1

4 �
n � 2

5

rxt � 1
�n� � �0 � �1 yt

�1� � �2 f t
�2�

� ... � �5 f t
�5� � �� t � 1

rxt � 1 � ��ft � �� t � 1 .

The second equality reminds us of the vector

and average (overbar) notation. Then, we esti-
mate bn by running the four regressions

rxt � 1
�n� � bn ���ft� � �t � 1

�n� , n � 2, 3, 4, 5.

The single-factor model (2) is a restricted
model. If we write the unrestricted regression
coefficients from equation (1) as 4 	 6 matrix
�, the single-factor model (2) amounts to the
restriction � � b��. A single linear combination
of forward rates ��ft is the state variable for
time-varying expected returns of all maturities.

Table 1 presents the estimated values of �
and b, standard errors, and test statistics. The �
estimates in panel A are just about what one
would expect from inspection of Figure 1. The
loadings bn of expected returns on the return-
forecasting factor ��f in panel B increase
smoothly with maturity. The bottom panel of
Figure 1 plots the coefficients of individual-
bond expected returns on forward rates, as im-
plied by the restricted model; i.e., for each n, it
presents [bn�1

... bn�5]. Comparing this plot
with the unrestricted estimates of the top panel,
you can see that the single-factor model almost
exactly captures the unrestricted parameter es-
timates. The specification (2) constrains the
constants (bn�0) as well as the regression coef-
ficients plotted in Figure 1, and this restriction
also holds closely. The unrestricted constants
are (�1.62, �2.67, �3.80, �4.89). The values
implied from bn�0 in Table 1 are similar, (0.47,
0.87, 1.24, 1.43) 	 (�3.24) � (�1.52, �2.82,
�4.02, �4.63). The restricted and unrestricted
estimates are close statistically as well as eco-
nomically. The largest t-statistic for the hypoth-
esis that each unconstrained parameter is equal
to its restricted value is 0.9 and most of them are
around 0.2. Section V considers whether the
restricted and unrestricted coefficients are jointly
equal, with some surprises.

The right half of Table 1B collects statistics
from unrestricted regressions (1). The unre-
stricted R2 in the right half of Table 1B are
essentially the same as the R2 from the restricted
model in the left half of Table 1B, indicating
that the single-factor model’s restrictions–that
bonds of each maturity are forecast by the same
portfolio of forward rates–do little damage to
the forecast ability.
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C. Statistics and Other Worries

Tests for joint significance of the right-hand
variables are tricky with overlapping data and
highly cross-correlated and autocorrelated
right-hand variables, so we investigate a num-
ber of variations in order to have confidence in
the results. The bottom line is that the five
forward rates are jointly highly significant, and
we can reject the expectations hypothesis (no
predictability) with a great deal of confidence.

We start with the Hansen-Hodrick correction,
which is the standard way to handle forecasting
regressions with overlapping data. (See the Ap-
pendix for formulas.) The resulting standard
errors in Table 1A (“HH, 12 lags”) are reason-
able, but this method produces a �2(5) statistic
for joint parameter significance of 811, far
greater than even the 1-percent critical value of
15. This value is suspiciously large. The Han-
sen-Hodrick formula does not necessarily pro-
duce a positive definite matrix in sample; while
this one is positive definite, the 811 �2 statistic
suggests a near-singularity. A �2 statistic calcu-

lated using only the diagonal elements of the
parameter covariance matrix (the sum of
squared individual t-statistics) is only 113. The
811 �2 statistic thus reflects linear combinations
of the parameters that are apparently—but sus-
piciously—well measured.

The “NW, 18 lags” row of Table 1A uses the
Newey-West correction with 18 lags instead of
the Hansen-Hodrick correction. This covariance
matrix is positive definite in any sample. It
underweights higher covariances, so we use 18
lags to give it a greater chance to correct for the
MA(12) structure induced by overlap. The in-
dividual standard errors in Table 1A are barely
affected by this change, but the �2 statistic
drops from 811 to 105, reflecting a more sen-
sible behavior of the off-diagonal elements.
The figure 105 is still a long way above the
1-percent critical value of 15, so we still
decisively reject the expectations hypothesis.
The individual (unrestricted) bond regres-
sions of Table 1B also use the NW, 18 cor-
rection, and reject zero coefficients with �2

values near 100.

TABLE 1—ESTIMATES OF THE SINGLE-FACTOR MODEL

A. Estimates of the return-forecasting factor, rxt�1 � ��ft � �� t�1

�0 �1 �2 �3 �4 �5 R2 �2(5)

OLS estimates �3.24 �2.14 0.81 3.00 0.80 �2.08 0.35
Asymptotic (Large T) distributions

HH, 12 lags (1.45) (0.36) (0.74) (0.50) (0.45) (0.34) 811.3
NW, 18 lags (1.31) (0.34) (0.69) (0.55) (0.46) (0.41) 105.5
Simplified HH (1.80) (0.59) (1.04) (0.78) (0.62) (0.55) 42.4
No overlap (1.83) (0.84) (1.69) (1.69) (1.21) (1.06) 22.6

Small-sample (Small T) distributions

12 lag VAR (1.72) (0.60) (1.00) (0.80) (0.60) (0.58) [0.22, 0.56] 40.2
Cointegrated VAR (1.88) (0.63) (1.05) (0.80) (0.60) (0.58) [0.18, 0.51] 38.1
Exp. Hypo. [0.00, 0.17]

B. Individual-bond regressions
Restricted, rxt�1

(n) � bn(��ft) � �t�1
(n) Unrestricted, rxt�1

(n) � �nft � �t�1
(n)

n bn Large T Small T R2 Small T R2 EH Level R2 �2(5)

2 0.47 (0.03) (0.02) 0.31 [0.18, 0.52] 0.32 [0, 0.17] 0.36 121.8
3 0.87 (0.02) (0.02) 0.34 [0.21, 0.54] 0.34 [0, 0.17] 0.36 113.8
4 1.24 (0.01) (0.02) 0.37 [0.24, 0.57] 0.37 [0, 0.17] 0.39 115.7
5 1.43 (0.04) (0.03) 0.34 [0.21, 0.55] 0.35 [0, 0.17] 0.36 88.2

Notes: The 10-percent, 5-percent and 1-percent critical values for a �2(5) are 9.2, 11.1, and 15.1 respectively. All p-values
are less than 0.005. Standard errors in parentheses “�”, 95-percent confidence intervals for R2 in square brackets “[ ]”.
Monthly observations of annual returns, 1964–2003.
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With this experience in mind, the following
tables all report HH, 12 lag standard errors, but
use the NW, 18 lag calculation for joint test
statistics.

Both Hansen-Hodrick and Newey-West for-
mulas correct “nonparametrically” for arbitrary
error correlation and conditional heteroskedas-
ticity. If one knows the pattern of correlation
and heteroskedasticity, formulas that impose
this knowledge can work better in small sam-
ples. In the row labeled “Simplified HH,” we
ignore conditional heteroskedasticity, and we
impose the idea that error correlation is due only
to overlapping observations of homoskedastic
forecast errors. This change raises the standard
errors by about one-third, and lowers the �2

statistic to 42, which is nonetheless still far
above the 1-percent critical value.

As a final way to compute asymptotic distri-
butions, we compute the parameter covariance
matrix using regressions with nonoverlapping
data. There are 12 ways to do this–January to
January, February to February, and so forth–so
we average the parameter covariance matrix
over these 12 possibilities. We still correct for
heteroskedasticity. This covariance matrix is
larger than the true covariance matrix, since by
ignoring the intermediate though overlapping
data we are throwing out information. Thus, we
see larger standard errors as expected. The �2

statistic is 23, still far above the 1-percent level.
Since we soundly reject using a too-large co-
variance matrix, we certainly reject using the
correct one.

The small-sample performance of test statis-
tics is always a worry in forecasting regressions
with overlapping data and highly serially corre-
lated right-hand variables (e.g., Geert Bekaert et
al., 1997), so we compute three small-sample
distributions for our test statistics. First, we run
an unrestricted 12 monthly lag vector autore-
gression of all 5 yields, and bootstrap the resid-
uals. This gives the “12 Lag VAR” results in
Table 1, and the “Small T” results in the other
tables. Second, to address unit and near-unit
root problems we run a 12 lag monthly VAR
that imposes a single unit root (one common
trend) and thus four cointegrating vectors.
Third, to test the expectations hypothesis (“EH”
and “Exp. Hypo.” in the tables), we run an
unrestricted 12 monthly lag autoregression of

the one-year yield, bootstrap the residuals, and
calculate other yields according to the expecta-
tions hypothesis as expected values of future
one-year yields. (See the Appendix for details.)

The small-sample statistics based on the 12
lag yield VAR and the cointegrated VAR are
almost identical. Both statistics give small-
sample standard errors about one-third larger
than the asymptotic standard errors. We com-
pute “small sample” joint Wald tests by using
the covariance matrix of parameter estimates
across the 50,000 simulations to evaluate the
size of the sample estimates. Both calculations
give �2 statistics of roughly 40, still convinc-
ingly rejecting the expectations hypothesis. The
simulation under the null of the expectations
hypothesis generates a conventional small-
sample distribution for the �2 test statistics.
Under this distribution, the 105 value of the
NW, 18 lags �2 statistic occurs so infrequently
that we still reject at the 0-percent level. Statis-
tics for unrestricted individual-bond regressions
(1) are quite similar.

One might worry that the large R2 come from
the large number of right-hand variables. The
conventional adjusted R� 2 is nearly identical, but
that adjustment presumes i.i.d. data, an assump-
tion that is not valid in this case. The point of
adjusted R� 2 is to see whether the forecastability
is spurious, and the �2 is the correct test that the
coefficients are jointly zero. To see if the in-
crease in R2 from simpler regressions to all five
forward rates is significant, we perform �2 tests
of parameter restrictions in Table 4 below.

To assess sampling error and overfitting bias
in R2 directly (sample R2 is of course a biased
estimate of population R2), Table 1 presents
small-sample 95-percent confidence intervals
for the unadjusted R2. Our 0.32–0.37 unre-
stricted R2 in Table 1B lie well above the 0.17
upper end of the 95-percent R2 confidence in-
terval calculated under the expectations
hypothesis.

One might worry about logs versus levels,
that actual excess returns are not forecastable,
but the regressions in Table 1 reflect 1/2�2

terms and conditional heteroskedasticity.1 We

1 We thank Ron Gallant for raising this important ques-
tion.
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repeat the regressions using actual excess re-
turns, er

t�1
(n)

� ey
t
(1)

on the left-hand side. The
coefficients are nearly identical. The “Level R2”
column in Table 1B reports the R2 from these
regressions, and they are slightly higher than
the R2 for the regression in logs.

D. Fama-Bliss Regressions

Fama and Bliss (1987) regressed each excess
return against the same maturity forward spread
and provided classic evidence against the ex-
pectations hypothesis in long-term bonds. Fore-
casts based on yield spreads such as Campbell
and Shiller (1991) behave similarly. Table 2 up-
dates Fama and Bliss’s regressions to include
more recent data. The slope coefficients are all
within one standard error of 1.0. Expected ex-
cess returns move essentially one-for-one for-
ward spreads. Fama and Bliss’s regressions
have held up well since publication, unlike
many other anomalies.

In many respects the multiple regressions and
the single-factor model in Table 1 provide
stronger evidence against the expectations hy-
pothesis than do the updated Fama-Bliss regres-
sions in Table 2. Table 1 shows stronger �2

rejections for all maturities, and more than dou-
ble Fama and Bliss’s R2. The Appendix shows
that the return-forecasting factor drives out
Fama-Bliss spreads in multiple regressions. Of
course, the multiple regressions also suggest the
attractive idea that a single linear combination
of forward rates forecasts returns of all maturi-
ties, where Fama and Bliss, and Campbell and
Shiller, relate each bond’s expected return to a
different spread.

E. Forecasting Stock Returns

We can view a stock as a long-term bond plus
cash-flow risk, so any variable that forecasts
bond returns should also forecast stock returns,
unless a time-varying cash-flow risk premium
happens exactly to oppose the time-varying in-
terest rate risk premium. The slope of the term
structure also forecasts stock returns, as empha-
sized by Fama and French (1989), and this fact
is important confirmation that the bond return
forecast corresponds to a risk premium and not
to a bond-market fad or measurement error in
bond prices.

The first row of Table 3 forecasts stock re-
turns with the bond return forecasting factor
��f. The coefficient is 1.73, and statistically
significant. The five-year bond in Table 1 has a
coefficient of 1.43 on the return-forecasting fac-
tor, so the stock return corresponds to a some-
what longer duration bond, as one would
expect. The 0.07 R2 is less than for bond re-
turns, but we expect a lower R2 since stock
returns are subject to cash flow shocks as well
as discount rate shocks.

Regressions 2 to 4 remind us how the dividend
yield and term spread forecast stock returns in this
sample. The dividend yield forecasts with a
5-percent R2. The coefficient is economically
large: a one-percentage-point higher dividend
yield results in a 3.3-percentage-point higher
return. The R2 for the term spread in the third
regression is only 2 percent. The fourth regres-
sion suggests that the term spread and dividend
yield predict different components of returns,
since the coefficients are unchanged in multiple
regressions and the R2 increases. Neither d/p
nor the term spread is statistically significant in

TABLE 2—FAMA-BLISS EXCESS RETURN REGRESSIONS

Maturity n � Small T R2 �2(1) p-val EH p-val

2 0.99 (0.33) 0.16 18.4 
0.00� 
0.01�
3 1.35 (0.41) 0.17 19.2 
0.00� 
0.01�
4 1.61 (0.48) 0.18 16.4 
0.00� 
0.01�
5 1.27 (0.64) 0.09 5.7 
0.02� 
0.13�

Notes: The regressions are rxt�1
(n) � 	 � �( ft

(n) � yt
(1)) � �t�1

(n) . Standard errors are in
parentheses “�”, probability values in angled brackets “
 �”. The 5-percent and 1-percent
critical values for a �2(1) are 3.8 and 6.6.
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this sample. Studies that use longer samples find
significant coefficients.

The fifth and sixth regressions compare ��f
with the term spread and d/p. The coefficient on
��f and its significance are hardly affected in
these multiple regressions. The return-forecasting
factor drives the term premium out completely.

In the seventh row, we consider an unre-
stricted regression of stock excess returns on all
forward rates. Of course, this estimate is noisy,
since stock returns are more volatile than bond
returns. All forward rates together produce an
R2 of 10 percent, only slightly more than the
��f R2 of 7 percent. The stock return forecast-
ing coefficients recover a similar tent shape
pattern (not shown). We discuss the eighth and
ninth rows below.

II. Factor Models

A. Yield Curve Factors

Term structure models in finance specify a
small number of factors that drive movements
in all yields. Most such decompositions find
“level,” “slope,” and “curvature” factors that
move the yield curve in corresponding shapes.
Naturally, we want to connect the return-
forecasting factor to this pervasive representa-
tion of the yield curve.

Since � is a symmetric function of maturity,
it has nothing to do with pure slope movements;
linearly rising and declining forward curves and
yield curves give rise to the same expected

returns. (A linear yield curve implies a linear
forward curve.) Since � is tent-shaped, it is
tempting to conclude it represents a curvature
factor, and thus that the curvature factor fore-
casts returns. This temptation is misleading, be-
cause � is a function of forward rates, not of
yields. As we will see, ��f is not fully captured
by any of the conventional yield-curve factors.
It reflects a four- to five-year yield spread that is
ignored by factor models.

Factor Loadings and Variance.—To connect
the return-forecasting factor to yield curve mod-
els, the top-left panel of Figure 2 expresses the
return-forecasting factor as a function of yields.
Forward rates and yields span the same space,
so we can just as easily express the forecasting
factor as a function of yields,2 �*�yt � ��ft.
This graph already makes the case that the re-
turn-forecasting factor has little to do with typ-
ical yield curve factors or spreads. The return-
forecasting factor has no obvious slope, and it is
curved at the long end of the yield curve, not the
short-maturity spreads that constitute the usual
curvature factor.

To make an explicit comparison with yield
factors, the top-right panel of Figure 2 plots the

2 The yield coefficients �* are given from the forward
rate coefficients � by �*�y � (�1-�2)y(1) � 2(�2-�3)y(2) �
3(�3-�4)y(3) � 4(�4-�5)y � 5�5y(5). This formula explains
the big swing on the right side of Figure 2, panel A. The
tent-shaped � are multiplied by maturity, and the �* are
based on differences of the �.

TABLE 3—FORECASTS OF EXCESS STOCK RETURNS

Right-hand variables ��f (t-stat) d/p (t-stat) y(5) � y(1) (t-stat) R2

1 ��f 1.73 (2.20) 0.07

2 D/p 3.30 (1.68) 0.05
3 Term spread 2.84 (1.14) 0.02
4 D/p and term 3.56 (1.80) 3.29 (1.48) 0.08

5 ��f and term 1.87 (2.38) �0.58 (�0.20) 0.07
6 ��f and d/p 1.49 (2.17) 2.64 (1.39) 0.10

7 All f 0.10

8 Moving average ��f 2.11 (3.39) 0.12
9 MA ��f, term, d/p 2.23 (3.86) 1.95 (1.02) �1.41 (�0.63) 0.15

Notes: The left-hand variable is the one-year return on the value-weighted NYSE stock return, less the 1-year bond yield.
Standard errors use the Hansen-Hodrick correction.
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loadings of the first three principal components
(or factors) of yields. Each line in this graph
represents how yields of various maturities
change when a factor moves, and also how to
construct a factor from yields. For example,
when the “level” factor moves, all yields go up
about 0.5 percentage points, and in turn the
level factor can be recovered from a combina-
tion that is almost a sum of the yields. (We
construct factors from an eigenvalue decompo-
sition of the yield covariance matrix. See the
Appendix for details.) The slope factor rises
monotonically through all maturities, and the
curvature factor is curved at the short end of the
yield curve. The return-forecasting factor in the
top-left panel is clearly not related to any of the
first three principal components.

The level, slope, curvature, and two remain-
ing factors explain in turn 98.6, 1.4, 0.03, 0.02,
and 0.01 percent of the variance of yields. As
usual, the first few factors describe the over-
whelming majority of yield variation. However,
these factors explain in turn quite different frac-
tions, 9.1, 58.7, 7.6, 24.3, and 0.3 percent of the
variance of ��f. The figure 58.7 means that the
slope factor explains a large fraction of ��f
variance. The return-forecasting factor ��f is
correlated with the slope factor, which is why
the slope factor forecasts bond returns in single
regressions. However, 24.3 means that the
fourth factor, which loads heavily on the four-
to five-year yield spread and is essentially un-
important for explaining the variation of yields,
turns out to be very important for explaining
expected returns.

Forecasting with Factors and Related Tests.—
Table 4 asks the central question: how well can
we forecast bond excess returns using yield
curve factors in place of ��f? The level and
slope factor together achieve a 22-percent R2.
Including curvature brings the R2 up to 26 per-
cent. This is still substantially below the 35-
percent R2 achieved by ��f, i.e., achieved
by including the last two other principal
components.

Is the increase in R2 statistically significant?
We test this and related hypotheses in Table
4. We start with the slope factor alone. We run
the restricted regression

rxt � 1 � a � b 
 slopet � �t � 1

� a � b 
 �q2
�yt� � �t � 1

where q2 generates the slope factor from yields.
We want to test whether the restricted coeffi-
cients a, (b 	 q2) are jointly equal to the unre-
stricted coefficients �*. To do this, we add 3
yields to the right-hand side, so that the regres-
sion is again unconstrained, and exactly equal to
��ft,

(4) rxt � 1 � a � b 
 slopet � c2yt
�2� � c3yt

�3�

� c4yt
�4� � c5yt

�5� � �� t � 1 .

Then, we test whether c2 through c5 are jointly

TABLE 4—EXCESS RETURN FORECASTS USING YIELD FACTORS AND INDIVIDUAL YIELDS

Right-hand variables R2

NW, 18 Simple S Small T
5 percent
crit. value�2 p-value �2 p-value �2 p-value

Slope 0.22 60.6 
0.00� 22.6 
0.00� 24.9 
0.00� 9.5
Level, slope 0.24 37.0 
0.00� 20.5 
0.00� 18.6 
0.00� 7.8
Level, slope, curve 0.26 31.9 
0.00� 17.3 
0.00� 16.7 
0.00� 6.0

y(5) � y(1) 0.15 85.5 
0.00� 30.2 
0.00� 33.2 
0.00� 9.5
y(1), y(5) 0.22 45.7 
0.00� 24.6 
0.00� 22.2 
0.00� 7.8
y(1), y(4), y(5) 0.33 9.1 
0.01� 4.6 
0.10� 4.9 
0.09� 6.0

Notes: The �2 test is c � 0 in regressions rxt�1 � a � bxt � czt � �� t�1 where xt are the indicated right-hand variables and
zt are yields such that {xt, zt} span all five yields.
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equal to zero.3 (So long as the right-hand vari-
ables span all yields, the results are the same no
matter which extra yields one includes.)

The hypothesis that slope, or any combina-
tion of level, slope, and curvature, are enough to
forecast excess returns is decisively rejected.
For all three computations of the parameter
covariance matrix, the �2 values are well above
the 5-percent critical values and the p-values are
well below 1 percent. The difference between
22-percent and 35-percent R2 is statistically
significant.

To help understand the rejection, the bottom-
left panel in Figure 2 plots the restricted and
unrestricted coefficients. For example, the coef-
ficient line labeled “level & slope” represents
coefficients on yields implied by the restriction
that only the level and slope factors forecast
returns. The figure shows that the restricted
coefficients are well outside individual confi-
dence intervals, especially for four- and five-
year maturity. The rejection is therefore
straightforward and does not rely on mysterious
off-diagonal elements of the covariance matrix
or linear combinations of parameters.

In sum, although level, slope, and curvature
together explain 99.97 percent of the variance
of yields, we still decisively reject the hypoth-
esis that these factors alone are sufficient to
forecast excess returns. The slope and curvature
factors, curved at the short end, do a poor job of
matching the unrestricted regression which is
curved at the long end. The tiny four- to five-
year yield spread is important for forecasting all
maturity bond returns.

Simple Spreads.—Many forecasting exer-
cises use simple spreads rather than the factors
common in the affine model literature. To see if
the tent-shaped factor really has more informa-
tion than simple yield spreads, we investigate a
number of restrictions on yields and yield
spreads.

Many people summarize the information in
Fama and Bliss (1987) and Campbell and
Shiller (1991) by a simple statement that yield
spreads predict bond returns. The “y(5) � y(1)”
row of Table 4 shows that this specification
gives the 0.15 R2 value typical of Fama-Bliss or
Campbell-Shiller regressions. However, the re-
striction that this model carries all the informa-
tion of the return-forecasting factor is decisively
rejected.

By letting the one- and five-year yield enter
separately in the next row of Table 4, we allow
a “level” effect as well as the 5–1 spread (y(1)

and y(5) is the same as y(1) and [y(5)� y(1)]). This
specification does a little better, raising the R2

value to 0.22 and cutting the �2 statistics down,
but it is still soundly rejected. The one- and
five-year yield carry about the same information
as the level and slope factors above.

To be more successful, we need to add yields.
The most successful three-yield combination is
the one-, four-, and five-year yields as shown in
the last row of Table 4. This combination gives
an R2 of 33 percent, and it is not rejected with
two of the three parameter covariance matrix
calculations. It produces the right pattern of
one-, four, and five-year yields in graphs like
the bottom-left panel of Figure 2.

Fewer Maturities.—Is the tent-shape pattern
robust to the number of included yields or for-
ward rates? After all, the right-hand variables in
the forecasting regressions are highly corre-
lated, so the pattern we find in multiple regres-
sion coefficients may be sensitive to the precise
set of variables we include. The bottom-right
panel of Figure 2 is comforting in this respect:
as one adds successive forward rates to the
right-hand side, one slowly traces out the tent-
shaped pattern.

Implications.—If yields or forward rates fol-
lowed an exact factor structure, then all state
variables including ��f would be functions of
the factors. However, since yields do not follow
an exact factor structure, an important state
variable like ��f can be hidden in the small
factors that are often dismissed as minor spec-
ification errors. This observation suggests a
reason why the return-forecast factor ��f
has not been noticed before. Most studies first

3 In GMM language, the unrestricted moment conditions
are E[yt�� t�1] . The restrictions set linear combinations of
these moments to zero, E[�� t�1] and q2

�E[yt�� t�1] in this
case. The Wald test on c2 through c5 in (4) is identical to the
overidentifying restrictions test that the remaining moments
are zero.
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reduce yield data to a small number of factors
and then look at expected returns. To see ex-
pected returns, it’s important first to look at
expected returns and then investigate reduced
factor structures. A reduced-factor representa-
tion for yields that is to capture the expected
return facts in this data must include the return-
forecasting factor ��f as well as yield curve
factors such as level, slope, and curvature, even
though inclusion of the former will do almost
nothing to fit yields, i.e., to reduce pricing errors.

B. Affine Models

It has seemed trouble enough to modify term
structure models to incorporate Fama-Bliss or
Campbell-Shiller predictability (Gregory Duf-
fee, 2002; Qiang Dai and Kenneth Singleton,
2002). Is it that much harder to incorporate the
much greater predictability we find into such
models? The answer is no. In fact, it is trivial:
one can construct market prices of risk that
generate exactly our return regressions in an
affine model. This discussion also answers the
question, “Is there any economic model that
generates the observed pattern of bond return
forecastability?”

Our task is to construct a time series process
for a nominal discount factor (pricing kernel,
transformation to risk-neutral measure, mar-
ginal utility growth, etc.) Mt�1 that generates
bond prices with the required characteristics via
Pt

(n) � Et(Mt�1Mt�2
... Mt�n). With Mt�1 �

�u�(ct�1)/u�(ct) 	 1/�t�1, we can as easily
express the primitive assumptions with prefer-
ences and a time-series process for consumption
growth and inflation. Since we do not compare
bond prices to consumption and inflation data,
however, we follow the affine model tradition
and specify the time-series process for Mt�1
directly.

We want to end up with bond prices that
satisfy the return-forecasting regressions

(5) rxt � 1 � �ft � �t � 1 ; cov��t � 1�t � 1
� � � �.

We work backwards from this end. Consider a
discount factor of the form

(6) Mt � 1 � exp��yt
�1� �

1
2

�t
���t � �t

��t � 1�

with normally distributed shocks �t�1. (We’re
constructing a model, so we can specify the
distribution.) From 1 � Et(Mt�1Rt�1), one-
period log excess returns must obey

(7)

Et �rxt � 1
�n� � �

1
2

�t
2�rxt � 1

�n� � � covt�rxt � 1
�n� , �t � 1

� ��t .

The time-varying discount-factor coefficients
�t are thus also the “market prices of risk” that
determine how much a unit of covariance trans-
lates into an expected return premium. Now, in
the notation of regression (5), condition (7) is

�ft �
1
2

diag��� � ��t .

Thus, we can ensure that the model represents
the one-period return regression correctly by the
form (6) with the choice

(8) �t � ��1��ft �
1
2

diag����.

(This is the log version of Lars Hansen and
Ravi Jagannathan’s 1991 discount factor
construction.)

The discount factor (6) is the basis of an
affine term structure model, and that model gen-
erates exactly the return regression (5). (The
model is a special case of the Andrew Ang and
Monika Piazzesi 2003 discrete time exponential-
Gaussian model.) Here is what that statement
means. Write the VAR for prices corresponding
to the return regression (5) as

(9)

pt � 1 � � � �pt � vt � 1 ; cov�vt � 1 , vt � 1
� � � V.

Since returns, yields, and forward rates are all
linear functions of each other, this log-price
VAR carries all the information of the return
regressions (5). Conversely, one can recover the
first four rows of � from the return regressions,
since rxt�1

(n) � pt�1
(n�1) � pt

(n) � pt
(1). The return

shocks �t�1 are exactly the first four price
shocks vt�1, and the return covariance matrix �
is the first four rows and columns of the price
shock covariance matrix V.

Now, forget that pt in (9) represents prices.
Treat (9) as a time-series process for a general
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vector of unobserved state variables, with nor-
mally distributed shocks. Suppose that the dis-
count factor is related to the state variables by
(6) and (8). (To write this out, you include the
linear transformation from prices pt to ft and yt

(1)

on the right-hand sides of (6) and (8), so that (6)
and (8) are specified in terms of the state vari-
ables pt.)

Now we have a time-series process for
the discount factor. We want to know what
prices are generated by this model. Is log
Et(Mt�1Mt�2

... Mt�n) equal to the state vari-
able pt

(n)? The answer is yes. The prices that
come out of the model are precisely the same as
the state variables that go in the model. In this
way, we have, in fact, constructed an affine
(prices are linear functions of state variables)
model that generates the return regression.

The logic of the proof of this statement is
transparent. We have constructed the discount
factor (6) to capture exactly the one-period yield
yt

(1) and one-period expected excess returns
Et(rxt�1

(n) ). But any price can always be trivially
expressed as its payoff discounted by its ex-
pected return, so if a model correctly captures
the latter it must correctly capture prices. (Alas,
the algebra required to show this simple point
takes some space, so we relegate it to the Ap-
pendix. The Appendix also discusses the affine
model in greater detail.)

Affine models seem puzzling to newcomers.
Why start with a price VAR and go through all
this bother to end up in the same place? The
point of an affine model is to exhibit a stochastic
discount factor (or pricing kernel) consistent
with the bond price dynamics in (9). We can use
this model to predict prices for bonds of other
maturities or to predict the prices of term struc-
ture derivatives in a way that leaves no arbitrage
relative to the included bonds. The affine model
by itself does not restrict the time-series process
for yields. If one desires further restrictions on
the time-series process for the data, such as a
k-factor structure, one can simply add structure
to the dynamics (9).

The discount factor also exhibits a possible
time series process for marginal utility growth.
It shows that there is an economic model that
generates our bond return forecastability. How-
ever, while it is tempting to look at the time
series properties of the discount factor Mt�1

and try to relate them to aggregate consumption,
inflation, and macroeconomic events, this is not
a simple inquiry, as examination of Hansen-
Jagannathan (1991) discount factors for stocks
does not quickly lead one to the correct eco-
nomic model. The result is alas a candidate
marginal utility process, not the marginal utility
growth process.

This example does no more than advertised:
it is a discrete-time affine term structure model
that reproduces the pattern of bond return pre-
dictability we find in the data at an annual
horizon. It is not necessarily a good general-
purpose term structure model. We have not
specified how to fill in higher frequencies, what
�, 	 in pt�1/12 � � � 	pt � vt�1/12 imply (9)
(i.e., 	12 � �), or, better, what continuous-time
process dpt � �(�)dt � 
(�)dz does so, and
correctly fits the data, including conditional het-
eroskedasticity and the non-Markovian struc-
ture we find below. We have not specified what
the monthly or instantaneous market prices of
risk and discount factor look like that generate
(6) at an annual horizon. (Pierre Collin-
Dufresne and Robert Goldstein 2003 write a
term structure model that incorporates our fore-
casts and addresses some of these issues.)

III. Lags and Measurement Error

A. Single-Lag Regressions

Are lagged forward rates useful for forecast-
ing bond excess returns? Measurement error is
the first reason to investigate this question. A
spuriously high price at t will erroneously indi-
cate that high prices at t forecast poor returns
from t to t � 1. If the measurement error is
serially uncorrelated, however, the forecast us-
ing a one-month lag of the forward rates is
unaffected by measurement error, since the
price at time t is no longer common to left- and
right-hand sides of the regression.4 Therefore,
we run regressions of average (across maturity)
returns rxt�1 on forward rates ft� i/12 that are
lagged by i months.

4 Stambaugh (1988) addressed the same problem by us-
ing different bonds on the right- and left-hand side. Since
we use interpolated zero-coupon yields, we cannot use his
strategy.
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Figure 3 plots the coefficients. The basic tent
shape is unaltered at the first and second lags.
As we move the right-hand variables backward
through time, the shape moves slightly to the
right, and this pattern continues through the first
year of additional lags (not shown). The reason
for this shift is that the return-forecasting factor
��f is not Markovian; if we predict ��f from
ft� i/12, the coefficients do not follow the tent-
shaped pattern. Thus, as we forecast returns
with longer lags of forward rates, the coeffi-
cients mix together the tent-shaped pattern by
which ft forecasts returns rxt�1 with the pattern
by which ft� i/12 predicts ��ft . The R2 decline
slowly with horizon, from 35 percent at lag 0 to
35, 32, and 31 percent at lags 1, 2, and 3, and
the coefficients are highly jointly significant.
The same pattern holds in forecasts of individ-
ual bond returns rxt�1

(n) on lagged forward rates
(not shown): the single-factor model is as evi-
dent using lagged forward rates as it is using the
time-t forward rates.

We conclude that serially uncorrelated mea-
surement errors, or even errors that are some-
what correlated over time, are not the reason for
the forecastability we see, including the large
R2, the single-factor structure, and the tent-
shaped pattern of coefficients. The most natural
interpretation of these regressions is instead that
��f reflects a slow-moving underlying risk pre-

mium, one almost as well revealed by ft� i/12 as
it is by ft.

Measurement error also does not easily pro-
duce the tent-shaped return-forecasting factor or
a single-factor model; it does not produce re-
gressions in which (say) the five-year yield
helps to forecast the two-year bond return. Fig-
ure 4 plots the entirely spurious coefficients that
result from rxt�1

(n) � �(n) ft � �t�1
(n) if excess

returns are truly unpredictable, but there is mea-
surement error in prices or forward rates. (See
the Appendix for details.) The coefficients are
step functions of forward rates, not tents. The
coefficients for the n-period bond excess return
simply load on the n-year yield and the one-year
yield. The pattern of coefficients differs com-
pletely across maturity rather than displaying a
single-factor structure. The only way to gener-
ate a single-factor prediction from measurement
error is if measurement error at time t is corre-
lated with measurement error one year later at
time t � 1, and in just the right way across
bonds, which seems rather far-fetched.

B. Multiple-Lag Regressions

Do multiple lags of forward rates help to
forecast bond returns? We find that they do, and
again with an attractive factor structure. We

FIGURE 3. COEFFICIENTS IN REGRESSIONS OF AVERAGE

(ACROSS MATURITY) EXCESS RETURNS ON LAGGED

FORWARD RATES, rxt�1 � ��ft� i/12 � �t�1
FIGURE 4. COEFFICIENTS IN REGRESSIONS OF BOND EXCESS

RETURNS ON FORWARD RATES (TOP) AND YIELDS (BOTTOM)
GENERATED BY PURE MEASUREMENT ERROR THAT IS

UNCORRELATED OVER TIME.
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started with unrestricted regressions. We found
that multiple regression coefficients displayed
similar tent shapes across maturity, much like
the single-lag regression coefficients of Figure
3, and once again bonds of different maturity
had the same pattern of regression coefficients
blown up by different amounts. These observa-
tions suggest a single-factor structure across
time as well as maturity,

(10) rxt � 1
�n� � bn�

��	0ft � 	1ft � �1/12� � 	2ft � �2/12�

� ... � 	kft � �k/12�] � �t � 1
�n� .

We normalize to j�0
k 	j � 1 so that the units

of � remain unaffected. Since we add only one
parameter (	k) per new lag introduced, this
specification gives a more believable forecast
than an unrestricted regression with many lags.
Since the single factor restriction works well
across maturities n, we present only the results
for forecasting average returns across maturity,
corresponding to Table 1A,

(11) rxt � 1 � ���	0ft � 	1ft � �1/12� � 	2ft � �2/12�

� ... � 	kft � �k/12�] � �� t � 1 .

We can also write the regression as

(12) rxt � 1 � 	0 ���ft� � 	1���ft � �1/12� �

� 	2���ft � �2/12� � � ... � 	k��
�ft � �k/12� � � �� t � 1.

We can think of the restricted model as simply
adding lags of the return-forecasting factor
��ft.

Table 5 presents estimates5 of this model.
The R2 rise from 35 to 44 percent once we have
added 3 additional lags. The � estimates change
little as we add lags. They do shift to the right a
bit, as we found for the single lag regressions in
Figure 3. The restriction that � is the same for
each lag is obviously not one to be used for
extreme numbers of lags, but there is little cred-
ible gain to generalizing it for the current
purpose.

With two lags, the � estimate wants to use a
moving average of the first and second lag. As
we add lags, a natural pattern emerges of essen-
tially geometric decay. The � and the marginal
forecast power of additional lags that they rep-
resent are statistically significant out to the
fourth additional lag.

The b loadings across bonds (not shown) are
essentially unchanged as we add lags, and the
R2 of the model that imposes the single-factor
structure across maturity are nearly identical to

5 For a given set of �, we estimate � by running regres-
sion (11). Then, fixing �, we estimate the � by running
regression (12). When this procedure has iterated to con-
vergence, we estimate bs from (10). The moment conditions
are the orthogonality conditions corresponding to regres-
sions (10)–(12). The parameters enter nonlinearly, so a
search or this equivalent iterative procedure are necessary to
find the parameters.

TABLE 5—ADDITIONAL LAGS

A. � estimates
Max lag const y(1) f (2) f (3) f (4) f (5) R2

0 �3.24 �2.14 0.81 3.00 0.80 �2.08 0.35
1 �3.22 �2.44 1.07 3.68 1.18 �3.11 0.41
2 �3.18 �2.56 1.33 3.47 1.76 �3.62 0.43
3 �3.20 �2.61 1.43 3.36 2.17 �3.98 0.44

B. � estimates and t statistics
Max lag 	0 	1 	2 	3 	0 	1 	2 	3

0 1.00 (8.44)
1 0.50 0.50 (8.95) (6.60)
2 0.38 0.35 0.28 (6.81) (6.45) (4.46)
3 0.31 0.29 0.20 0.21 (4.82) (7.17) (4.53) (3.07)

Notes: The model is rxt�1
(n) � ��[	0ft � 	1ft�(1/12) � 	2ft�(2/12) � ... � 	kft�(k/12)] � �t�1

(n) .
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the R2 of unrestricted models, as in Table
1B. Returns on the individual bonds display the
single-factor structure with the addition of
lagged right-hand variables.

Multiple lags also help when we forecast
stock excess returns. As indicated by row 8 in
Table 3, the R2 for stocks rises from 7 percent to
12 percent when we include 3 additional lags.
The slope coefficient rises to 2.11, which cor-
responds well to a bond substantially longer
than five years. As shown in the last row of
Table 3, the multiple regression with term
spreads and d/p is also stronger than its coun-
terpart with no lags.

C. The Failure of Markovian Models

The importance of extra monthly lags means
that a VAR(1) monthly representation, of the
type specified by nearly every explicit term
structure model, does not capture the patterns
we see in annual return forecasts. To see the
annual return forecastability, one must either
look directly at annual horizons as we do, or one
must adopt more complex time-series models
with lags.

To quantify this point, we fit an uncon-
strained monthly yield VAR, yt�1/12 � Ayt �
�t�1/12, and we find the implied annual VAR
representation yt�1 � A12yt � ut�1. Yields,
forward rates, and returns are all linear func-
tions of each other, so we can calculate return
forecasts and R2 directly from this annual VAR
representation. Figure 5 presents the annual ex-
cess return forecasting coefficients for individ-
ual bonds implied by this monthly VAR(1). The
coefficients here are nothing at all like the tent
shape we find in the direct annual horizon re-
gressions or VAR. They are most reminiscent of
the coefficients resulting from pure measure-
ment error in Figure 4: the n-year yield is the
most important forecasting variable for the one-
year return on the n-year bond, and the forward
rate coefficients, cumulating these, look like
step functions. Most important, these coeffi-
cients hide the single-factor structure: no single
combination of yields or forward rates summa-
rizes return forecastability of bonds across dif-
ferent maturity. The forecast R2 are cut to 22–26
percent instead of 32–37 percent–and given the
pattern, one would be well justified in dismiss-

ing the whole thing as measurement error. (The
implied forecasts of average [across maturity]
returns rxt�1 do reveal the usual shapes, as one
might guess by visually averaging the lines in
Figure 5, but in much attenuated form, and also
with only 24 percent R2.) By focusing directly
on an annual horizon, our original regressions
raise the signal-to-noise ratio and uncover the
underlying return forecast. (One can alterna-
tively use more complex models to get the same
result. For example, the 12 lag monthly VAR
we use for bootstraps does imply the tent-
shaped single-factor model and the large fore-
cast R2.)

This observation suggests a second reason
why such an important feature of the yield curve
could go unrecognized for so long. Yield curve
modelers almost always specify and estimate a
high-frequency model, using monthly or finer
data, and never include lags. If they look at all
at annual horizon return forecasts, they find the
implied forecasts from these high-frequency
Markovian specifications. But since the lags do
matter, these implied annual forecasts miss
much predictability and completely miss the
one-factor structure.

D. Summary and Implications

Additional lags matter. But additional lags
are awkward bond forecasting variables. Bond

FIGURE 5. REGRESSION COEFFICIENTS OF ONE-YEAR EXCESS

RETURNS ON FORWARD RATES (TOP) AND YIELDS (BOTTOM)
IMPLIED BY A MONTHLY VAR
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prices are time-t expected values of future dis-
count factors, so a full set of time-t bond yields
should drive out lagged yields in forecasting
regressions:6 Et(x) drives out Et�1/12(x) in fore-
casting any x. Bond prices reveal all other im-
portant state variables. For this reason, term
structure models do not include lags.

The most natural interpretation of all these
results is instead that time-t yields (or prices, or
forwards) truly are sufficient state variables, but
there are small measurement errors that are
poorly correlated over time. For example, if a
true variable xt � ��ft is an AR(1) xt � �xt�1
� ut, but is measured with error x̃t � xt � vt, vt
i.i.d., then the standard Kalman filter says that
the best guess of the true xt is a geometrically
weighted moving average E(xt�x̃t, x̃t�1, x̃t�2,
...) � bj�0

�  jx̃t� j. This is the pattern that we
find in Table 5.

However, measurement error clearly is not
the driving force behind return forecastability or
the nature of the return-forecasting factor. The
tent-shaped single factor is revealed and the R2

is still large using single lags of forward rates,
which avoid the effects of measurement error.
Measurement error produces multifactor mod-
els (each return forecast by its own yield), not a
single-factor model. We reach the opposite con-
clusion: measurement error conceals the under-
lying single-factor model unless one takes steps
to mitigate it–for example, looking directly at
annual horizons as we do–and even then the
measurement error cuts down the true R2 from
over 44 percent to “only” 35 percent.

IV. History

One wants to see that the regression is robust,
that it is driven by clear and repeated stylized
facts in the data, and that it is not an artifact of
one or two data points. To this end, we examine
the historical experience underlying the
regressions.

Figure 6 plots the forecast and actual average
(across maturity) excess returns, along with the
history of yields. The top line averages the

Fama-Bliss forecasts from Table 2 across matu-
rity. The second line gives the return-forecasting
factor. We present the forecast using three lags,
Et(rxt�1) � ��j�0

3 	j ft� j/12; the forecast us-
ing no lags is nearly indistinguishable. The ex
post return line is shifted to the left one year so
that the forecast and its result are plotted at the
same time period.

The graph verifies that the forecasting power
of ��f and the improved R2 over the Fama-Bliss
and other slope-based regressions are not driven
by outliers or suspicious forecasts of one or two
unusual data points. The return forecast has a
clear business cycle pattern, high in troughs and
low at peaks. The results do not depend on
full-sample regressions, as the forecast using
real-time regressions (from 1964 to t, not
shown) is quite similar.

Comparing the return-forecasting factor and
the forward spreads embodied in the Fama-
Bliss regressions, we see that they agree in
many instances. (Forecasts based on the slope
of the term structure or simple yield spreads are
quite similar to the Fama-Bliss line.) One pattern
is visible near 1976, 1982, 1985, 1994, and 2002;
in each case there is an upward sloping yield curve
that is not soon followed by rises in yields, giving
good returns to long-term bond holders.

6 Of course, the true state vector might use more than
five yields, so lags enter because they are correlated with
omitted yields. This seems to us like a remote possibility for
explaining the results.

FIGURE 6. FORECAST AND ACTUAL AVERAGE (ACROSS

MATURITY) EXCESS RETURNS.

Notes: The ex-post return line is shifted to the left one year
so that the realization lines up with the forecast. The one-
year yield in the bottom set of lines is emphasized. The
vertical lines mark dates at which Figure 7 plots forward
curves.
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However, the figure also shows the much
better fit of the return-forecasting factor in many
episodes, including the late 1960s, the turbulent
early 1980s, and the mid-1990s. The return-
forecasting factor seems to know better when to
get out, when the long-anticipated (by an
upward-sloping yield curve) rise in rates will
actually come, leading to losses on long-term
bonds. This difference is dramatic in 1983,
1994, and 2003.

What information is ��f using to make these
forecasts? To answer this question, Figure 7
plots the forward curves at selected peaks
(solid) and troughs (dashed) of the return-
forecasting factor. These dates are marked by
vertical lines in Figure 6. In December 1981, the
return-forecasting factor signaled a good excess
return on long-term bonds, though the yield
curve was nearly flat and the Fama-Bliss regres-
sion forecast nothing. Figure 7 shows why:
though flat, the forward curve has a nice tent
shape, which multiplied by � gives a strong
forecast. As shown in Figure 6, that forecast
was correct. By April of 1983, however, ��f
forecast essentially no excess return on long-
term bonds (Figure 6), despite the strong upward
slope, because the forward rate lost its tent
shape (Figure 7). The Fama-Bliss and other
slope forecasts are optimistic, but the return-
forecasting factor proves right, and long-term

bonds have worse than negative 5-percent ex-
cess return as interest rates rise over the next
year.

In August of 1985, the level and slope of the
term structure are about the same as they were
in April of 1983, and the slope-based forecast is
the same, mildly optimistic. But the return-
forecasting factor predicts a strong, nearly
10-percent expected excess return, and this re-
turn is borne out ex post. What’s the difference?
April 1983 and August 1985 have the same
level and slope, but April 1983 has no clear
curve, while August 1985 curves down. Inter-
acted with the tent-shaped � operator, we get
the correct strong, positive, and correct forecast.

The peak and trough of April 1992 and Au-
gust 1993 provide a similar comparison. In
April 1992, the yield curve is upward sloping
and has a tent shape, so both the return-
forecasting factor and the slope-based forecasts
are optimistic. During the subsequent year,
yields actually went down, giving good returns
to long-term bond holders. By August 1993, the
slope is still there but the forward curve has lost
its tent shape. The Fama-Bliss and other slope
forecasts are still positive, but the return-
forecasting factor gives the order to bail out.
That order proves correct, as yields do rise
sharply in the following year giving terrible
returns to long-term bond holders. The same
pattern has set up through the recession of 2000,
and the slope forecast and ��f disagree once
again at the end of the sample.

In sum, the pattern is robust. A forecast that
looks at the tent shape, ignoring the slope, has
made better forecasts in each of the important
historical episodes.

V. Tests

A. Testing the Single-Factor Model

The parameters of the unrestricted (rxt�1 �
�ft � �t�1) return forecasting regressions and
those of the restricted single-factor model
(rxt�1 � b(��ft) � �t�1) are very close indi-
vidually (Figure 1), and well inside one-
standard error bounds, but are they jointly
equal? Does an overall test of the single-factor
model reject?

FIGURE 7. FORWARD RATE CURVE ON SPECIFIC DATES

Note: Upward pointing triangles with solid lines are high-
return forecasts; downward pointing triangles with dashed
lines are low-return forecasts.
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The moments underlying the unrestricted re-
gressions (1) are the regression forecast errors
multiplied by forward rates (right-hand variables),

(13) gT ��� � E��t � 1 � ft� � 0.

By contrast, our two-step estimate of the
single-factor model sets to zero the moments,

(14) E��14
��t � 1� � ft� � 0

(15) E��t � 1 � ���ft�� � 0.

We use moments (14)-(15) to compute GMM
standard errors in Table 1. The restricted model
� � b�� does not set all the moments (13) to
zero, gT(b��) � 0. We can compute the “JT” �2

test that the remaining moments are not too
large. To do this, we express the moments (14)-
(15) of the single-factor model as linear combi-
nations of the unrestricted regression moments
(13), aTgT � 0. Then we apply Lars Hansen’s
(1982) Theorem 3.1 (details in the Appendix).
We also compute a Wald test of the joint pa-
rameter restrictions � � b��. We find the
GMM distribution cov[vec(�)] , and then com-
pute the �2 statistic [vec(b��) � vec(�)]�

cov[vec(�)]�1 [vec(b��) � vec(�)]. (vec since
� is a matrix.)

Table 6 presents the tests. Surprisingly, given
how close the parameters are in Figure 1, the
tests in the first two rows all decisively reject

the single-factor model. The NW, 18 S matrix
again produces suspiciously large �2 values, but
tests with the simplified S matrix, the S matrix
from nonoverlapping data, and the small sample
also give strong rejections.

When we consider a forecast lagged one
month, however, the evidence against the
single-factor model is much weaker. The as-
ymptotic �2 values are cut by factors of 5 to 10.
The simple S and nonoverlapping tests no
longer reject. The small-sample �2 values also
drop considerably, in one case no longer
rejecting.

B. Diagnosing the Rejection

To understand the single-factor model rejec-
tion with no lags, we can forecast single-factor
model failures. We can estimate �̃ in ,

(16) rxt � 1 � b 
 rxt � 1 � �̃�ft � wt � 1 .

The left-hand side is a portfolio long the excess
return of the nth bond, and short bn times the
average of all excess returns. The restriction of
the single-factor model is precisely that such
portfolios should not be forecastable. (Since
Et(rxt�1) � ��ft, we can equivalently put rxt�1
� b 	 ��ft on the left-hand side. Here, we
check whether individual forward rates can
forecast a bond’s return, above and beyond the
constrained pattern b��ft.)

TABLE 6—GMM TESTS OF THE SINGLE-FACTOR MODEL

Lag i Test

NW, 18 Simple S No overlap Small sample

�2 p-value �2 p-value �2 p-value �2 p-value

0 JT 1269 
0.00� 110 
0.00� 87 
0.00� 174 
0.00�
0 Wald 3460 
0.00� 133 
0.00� 117 
0.00� 838 
0.00�
1 JT 157 
0.00� 19.8 
0.18� 22.1 
0.11� 86.4 
0.00�
1 Wald 327 
0.00� 20.0 
0.18� 24.5 
0.06� 74.4 
0.00�
2 JT 134 
0.00� 20.4 
0.16� 22.7 
0.09� 80.4 
0.00�
2 Wald 240 
0.00� 20.5 
0.15� 23.9 
0.07� 22.8 
0.05�

Notes: Tests of the single-factor model rxt�1 � b��ft� i/12 � �t�1 against the unrestricted model rxt�1 � �ft� i/12 � �t�1.
The 5-percent and 1-percent critical values for all tests are 25.0 and 30.6, respectively. JT gives the �2 test that all moments
of the unrestricted regression E(ft� i/12 R �t�1) are equal to zero. Wald gives the Wald test of the joint parameter restrictions
b�� � �. Column headings give the construction of the S matrix. “Small sample” uses the covariance matrix of the
unrestricted moments E(ft� i/12 R �t�1) across simulations of the 12 lag yield VAR to calculate gT

�cov(gT)�gT and it uses
parameter covariance matrix cov(�) of unconstrained estimates across simulations in Wald tests.
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These regressions amount to a characteriza-
tion of the unconstrained regression coefficients
in rxt�1 � �ft � �t�1. The coefficients �̃ are
simply the difference between the uncon-
strained and constrained regression coefficients,
�̃� � � � b��. The Wald test in Table 6 is
precisely a test of joint significance of these
coefficients. Here, we examine the coefficients
for interpretable structure.

Table 7 presents regressions of the form (16).
We use yields rather than forward rates on the
right-hand side, as yields paint a clearer picture.
A pattern emerges: the diagonals (emphasized
by boldface type) are large. If the two-year yield
is a little high (first row, 0.80) relative to the
other yields, meaning that the two-year bond
price is low, then two-year bond returns will be
better than the one-factor model suggests,
rxt�1

(2) � b2rxt�1 will be large. Similarly, if the
three-, four-, or five-year yields are higher than
the others (2.36, 1.84, 0.72), then the three-,
four-, and five-year bonds will do better than the
single-factor model suggests. The forecasts are
idiosyncratic. There is no single factor here:
each bond is forecast by a different function of
yields, and the pattern is quite similar to the
pattern induced by measurement error in the
bottom panel of Figure 4.

These forecasts are statistically significant,
with some impressive t-statistics, and hence
they cause the statistical rejection of the single-
factor model with no lags. The R2 from 0.12 to
0.37 are at least as good as the Fama-Bliss
forecasts and sometimes as good as the single-
factor forecasts of overall excess returns.

So why did the single-factor model look like
such a good approximation? Because the devi-
ations from the single-factor model are tiny. The
standard deviation of expected portfolio returns
�(�̃�y) ranges from 17 to 21 basis points, and
that of the ex post portfolio returns �(lhs)
ranges from 30 to 61 basis points. By contrast,
the standard deviation of expected excess re-
turns �(bn��y) ranges from 1.12 to 3.45 per-
centage points, and that of ex post excess
returns ranges from 1.93 to 6 percentage points.
Tiny returns are forecast by tiny yield spreads,
but with good R2 and statistical significance.

As another way to capture the structure of
expected returns, we perform a principal com-
ponents analysis of expected returns by an

eigenvalue decomposition of cov(�ft , ft
���).

(Details are provided in the Appendix.) The first
principal component is almost exactly the
return-forecast factor ��, and bond returns load
on it with almost exactly the b loadings we
found above. This first principal component is
by far the largest: The standard deviations of the
principal components are 5.16, 0.26, 0.20, and
0.16 percentage points. As fractions of variance,
they account for 99.51, 0.25 0.15, and 0.09
percent of the total variance of expected returns.
Thus, the first factor, ��f, dominates the vari-
ance of expected returns.

This is the heart of our result: if one forms an
eigenvalue decomposition of the covariance
matrix of yields, yield changes, prices, for-
wards, ex post returns, or just about any other
characteristic of the term structure, one obtains
“level,” “slope,” and “curvature” components,
which account for almost all variation. If one
forms an eigenvalue decomposition of the co-
variance matrix of expected excess returns,
however, the tent-shaped ��f, poorly related to
level, slope, and curvature, is by far the domi-
nant component.

But the remaining components are statisti-
cally significant, and that is why the single-
factor model with no lags is rejected. To see
them, we have to finely tune our microscope. If
we forecast the returns of portfolios �rxt�1,
using portfolio weights  with �b � 0, then
the single-factor model predicts Et(

�rxt�1) �
�b(��ft) � 0. The left-hand side of (16) and
Table 7 give one simple set of such portfolios.
This prediction turns out to be false: these port-
folios can be predicted, with patterns nothing
like �. But with any other set of portfolios,
portfolios �rxt�1 with �b even slightly dif-
ferent from 0, the first factor will overwhelm the
smaller additional factors, so the portfolio will
be forecast with a pattern very close to ��ft.

Repeating regressions of the form of Table
7 with lagged forward rates, we obtain much
smaller forecasts; some t statistics are a bit
above 2, as some of the tests in Table 6 still
suggest statistical rejections, but as in Table
6, this depends on how one calculates the test
statistics. Most important, there is no interpret-
able pattern to the coefficients, which leads us
further to discount evidence against the single-
factor model when we lag the right-hand variables.
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C. Interpretation

What should we make of these additional
return-forecasting factors? They are very small.
The factors represent small movements of the
bond yields, and they forecast small returns to
the corresponding portfolios. They are also id-
iosyncratic; there is no common structure.
When the nth bond price is a bit low (yield is a
bit high), that bond has a high subsequent re-
turn. Furthermore, the phenomenon lasts only
one month, as the evidence against the single-
factor model with lagged forecasting variables
is much weaker. Thus, the failures seem to
represent one-month serially uncorrelated pric-
ing discrepancies.

Even though they are small, they are not
necessarily “economically insignificant.” The
portfolios are zero-cost, so a huge short position
matched by a huge long position can make a lot
of money from a small pricing discrepancy with
a 35-percent R2. A bond trader’s business is
precisely to pick individual bonds that are a
little over- or under-priced relative to a yield

curve, hedge and leverage as much as possible,
and wait for the small price fluctuation to melt
away. One needs to ask whether 20-basis-point
pricing discrepancies survive real-world trans-
actions costs, but our interpolated zero-coupon
bond data are too far removed from transactions
data to answer this question.

On the other hand, they could simply be
measurement errors, and we favor this interpre-
tation. The facts are entirely consistent with a
measurement error interpretation. Serially un-
correlated measurement error will cause multi-
ple lags to help to forecast bond returns; will
cause a rejection of the single-factor model with
zero lags and a failure to reject the single-factor
model with lagged right hand variables; and
will cause the idiosyncratic nature of the fore-
casts of failures seen in Table 7. If the failure
represents real pricing anomalies, there is no
reason those anomalies should be idiosyn-
cratic, rather than follow structures with ad-
ditional factors that move bonds of all
maturities. And, most tellingly, additional
factors in expected returns cannot induce the

TABLE 7—FORECASTING THE FAILURES OF THE SINGLE-FACTOR MODEL

A. Coefficients and t-statistics

Left-hand var.

Right-hand variable

const. yt
(1) yt

(2) yt
(3) yt

(4) yt
(5)

rxt�1
(2) � b2rxt�1 �0.11 �0.20 0.80 �0.30 �0.66 0.40

(t-stat) (�0.75) (�1.43) (2.19) (�0.90) (�1.94) (1.68)
rxt�1

(3) � b3rxt�1 0.14 0.23 �1.28 2.36 �1.01 �0.30
(t-stat) (1.62) (2.22) (�5.29) (11.24) (�4.97) (�2.26)
rxt�1

(4) � b4rxt�1 0.21 0.20 �0.06 �1.18 1.84 �0.82
(t-stat) (2.33) (2.39) (�0.33) (�8.45) (9.13) (�5.48)
rxt�1

(5) � b5rxt�1 �0.24 �0.23 0.55 �0.88 �0.17 0.72
(t-stat) (�1.14) (�1.06) (1.14) (�2.01) (�0.42) (2.61)

B. Regression statistics
Left-hand var. R2 �2(5) �(�̃�y) �(lhs) �(bn��y) �(rxt�1

(n) )

rxt�1
(2) � b2rxt�1 0.15 41 0.17 0.43 1.12 1.93

rxt�1
(3) � b3rxt�1 0.37 151 0.21 0.34 2.09 3.53

rxt�1
(4) � b4rxt�1 0.33 193 0.18 0.30 2.98 4.90

rxt�1
(5) � b5rxt�1 0.12 32 0.21 0.61 3.45 6.00

Notes: In panel A we use the estimates b from Table 1 to construct left-hand variables; if the single-factor model rxt�1 �
b��ft � �t�1 holds, these portfolio returns should not be predictable. In panel B, �2(5) gives the �2 statistic for joint
significance of all right-hand variables, excluding the constant. The 5-percent critical value is 11.07; p values are all below
1 percent. �(�̃�y) gives the standard deviation of the right-hand side variables, and �(lhs) gives the standard deviation of the
left-hand variables. �(bn��y) gives the standard deviation of the single-factor model forecast of rxt�1

(n) for comparison, and
�(rxt�1

(n) ) gives the standard deviation of that left-hand variable for comparison.
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non-Markovian structure that additional lags
help to forecast returns.

In any case, the economically interesting
variation in expected bond returns (to all but
highly leveraged, low transactions cost traders)
is clearly represented by the single-factor
model, which explains 99.5 percent of the vari-
ance of bond expected returns as forecast by
forward rates.

D. Two-Step versus Efficient Estimates

We can finally answer the question, “Why
estimate the model in Table 1 with an ad hoc
two-step procedure, rather than using efficient
GMM?” Under the null that the single-factor
model is true, efficient GMM (min{b,�}
gT(b��)�S�1gT(b��)) produces asymptotically
efficient estimates. However, the single-factor
model is statistically rejected. We want good
estimates of an approximate model, not efficient
estimates of an exact model. Efficient GMM
can do a poor job of that task, even in samples
in which one can trust estimation and inversion
of a 24	24 S matrix with 12 lags.

The crucial question is, what moments will
GMM use to choose �, the linear combination
of forward rates that forms the single factor?
Once the single-factor parameter � is estimated,
even efficient GMM estimates the remaining b
coefficients by regressions of each return on
��ft. In turn, taking linear combinations of mo-
ments is the same thing as forming a portfolio,
so the crucial question becomes, “Which single
portfolio of excess returns �rxt�1 will effi-
cient GMM regress on all forward rates to es-
timate �?” The answer is that efficient GMM
pays attention to well-measured linear combi-
nations of moments, guided by S, not “large” or
“economically interesting” moments.

For example, suppose that the third row of
Table 7A forecasts its corresponding linear com-
bination of returns rxt�1

(4) � b4 rxt�1with 100
percent R2. This moment is exactly measured,
so efficient GMM will estimate parameters � to
fit this regression exactly–it will report the third
row of Table 7A as the “single-factor model.”
Efficient GMM will completely miss the eco-
nomically interesting first factor that describes
99.5 percent of the variance of expected returns.

In our data, the R2 for all expected return
“factors” are roughly comparable (Table
7B), and thus all are about as well measured.
That fact means that efficient GMM pays about
equal attention to all the regressions in Table
7B along with the regression of rxt�1 � ��ft �
�� t�1, producing a single factor that is roughly
an average of � and the rows of Table 7B. The
resulting single factor explains very little of the
variance of expected excess returns.

We want a GMM estimate of the approximate
single factor that explains most of the variance
of expected returns, not the estimate that mini-
mizes the best measured, even if tiny, moments.
For that purpose, we want GMM to pay atten-
tion to a portfolio such as 1�rxt�1, as in the
two-step procedure. The return-forecasting fac-
tor is so dominant that it doesn’t really matter
which linear combination we choose, as long as
we keep GMM from paying attention to the
special linear combinations �rxt�1 with
�b � 0 that produce our very small, but sta-
tistically significant, additional factors.

VI. Concluding Remarks

The Appendix presents many additional re-
sults and robustness checks. We show that the
return forecasts are stable across subsamples,
they survive in real-time estimates, they gener-
ate trading rule profits, and they are verified in
a different dataset. The Appendix shows how
��f forecasts the short rate of interest; it pre-
sents individual-bond forecasting regressions;
and it details the principal components analysis
of expected excess returns. The Appendix also
documents the computations and gives a de-
tailed presentation of the affine model.

This analysis is still admittedly incomplete in
many respects. We examine only one- to five-
year maturity bonds at a one-year horizon. Un-
derstanding how expected returns and interest
rate forecasts vary across investment horizon
and extending the analysis to all maturities are
of course both important issues. However, these
extensions require some subtle time-series anal-
ysis, probably including an explicit treatment of
measurement errors. They also require extend-
ing the data beyond zero coupon bonds at one-
year spaced maturities, and integration with an
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explicit term structure model when returns can-
not be measured directly. We do not mention
variances or covariances, and hence we do not
mention Sharpe ratios or optimal portfolios.
Modeling time-varying second moments is
likely to require as much effort as modeling the
first moments in this paper. Finally, we do not
tie the time-varying premia to macroeconomic
or monetary fundamentals. In particular, we do
not offer a deep interpretation of what the tent-
shaped function of forward rates or the four- to
five-year yield spread means, other than to note
that the result is suggestively correlated with
business cycles. All these and more are impor-
tant extensions, but we have strained space and
the reader’s patience enough for now.
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